Caffe(卷积神经网络框架,Convolutional Architecture for Fast Feature Embedding)
caffe是一个清晰,可读性高,快速的深度学习框架。作者是贾扬清,加州大学伯克利的ph.D,现就职于Facebook。
Caffe的全称应该是Convolutional Architecture for Fast Feature Embedding,它是一个清晰、高效的深度学习框架,它是开源的,核心语言是C++,它支持命令行、Python和Matlab接口,它既可以在CPU上运行也可以在GPU上运行。它的license是BSD 2-Clause。
Deep Learning比较流行的一个原因,主要是因为它能够自主地从数据上学到有用的feature。特别是对于一些不知道如何设计feature的场合,比如说图像和speech。
Caffe的设计:基本上,Caffe follow了神经网络的一个简单假设----所有的计算都是以layer的形式表示的,layer做的事情就是take一些数据,然后输出一些计算以后的结果,比如说卷积,就是输入一个图像,然后和这一层的参数(filter)做卷积,然后输出卷积的结果。